Total number of printed pages-4
44 (2) BCA-2.3

2023

digital logic fundamentals

Paper: BCA-2.3
Full Marks: 80
Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Fill in the blanks with appropriate words : $1 \times 5=5$
(i) For a 2 input logic gate the output will be 1 when both the inputs are 1 is
\qquad gate.
(ii) Flip-flop is a \qquad circuit.
(iii) The gate is known as a universal logic gate.
(iv) $x \cdot x=$ \qquad .
(v) The POS in Boolean logic stands for
\qquad
2. Answer any five questions from the following :

$$
2 \times 5=10
$$

(a) Draw the symbol and give the truth table of NOR gate.
(b) Explain De Morgan's theorem.
(c) Explain state table:
(d) Mention two examples of combinational circuit.
(e) What are the main two types of sequential circuit? Define.
(f) What is ADDER? Define its types.
(g) What do you mean by shift register?
3. Answer any four questions from the following:
(a) What are the different types of shift registers used in digital system design ? Explain briefly.
(b) Show that $x+x=x$.
(c) Write a short note on the different postulates and basic theorems of Boolean algebra.
(d) What is Demultiplexer? Draw the logic diagram.
(e) Explain the working of Encoder.
(f) Simplify the Boolean function
$F(w, x, y, z)=\Sigma(0,1,2,4,5,6,8,9,12,13,14)$
4. (a) What is a counter? Design a 3-bit binary counter and give logic diagram.

$$
2+8=10
$$

Or

What is JK flip-flop? Write the truth table of a JK flip-flop and discuss its operation.
(b) What do you mean by parallel load? Explain the working and design of a registers with parallel load. $\quad 2+8=10$

Or

Explain the working of Magnitude comparator.
5. (a) What is excitation tables ? Give excitation table for RS flip-flop.

$$
2+3=5
$$

(b) Using De Morgan's theorem show that
$A+A^{\prime} B+A^{\prime} B^{\prime}=1$.

Or

Given the Boolean function

$$
F=x y^{\prime} z+x^{\prime} y^{\prime} z+x y z
$$

Draw the logic diagram using the original Boolean expression.
6. Write short notes on : (any three) $5 \times 3=15$
(a) Multiplexer
(b) State reduction and Assignment
(c) D flip-flop
(d) Binary ripple counter
(e) State diagram and state equation

